Metamath Proof Explorer


Theorem weinxp

Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997) (Revised by Mario Carneiro, 10-Jul-2014)

Ref Expression
Assertion weinxp RWeARA×AWeA

Proof

Step Hyp Ref Expression
1 frinxp RFrARA×AFrA
2 soinxp ROrARA×AOrA
3 1 2 anbi12i RFrAROrARA×AFrARA×AOrA
4 df-we RWeARFrAROrA
5 df-we RA×AWeARA×AFrARA×AOrA
6 3 4 5 3bitr4i RWeARA×AWeA