Metamath Proof Explorer


Theorem frinxp

Description: Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014)

Ref Expression
Assertion frinxp RFrARA×AFrA

Proof

Step Hyp Ref Expression
1 ssel zAxzxA
2 ssel zAyzyA
3 1 2 anim12d zAxzyzxAyA
4 brinxp yAxAyRxyRA×Ax
5 4 ancoms xAyAyRxyRA×Ax
6 3 5 syl6 zAxzyzyRxyRA×Ax
7 6 impl zAxzyzyRxyRA×Ax
8 7 notbid zAxzyz¬yRx¬yRA×Ax
9 8 ralbidva zAxzyz¬yRxyz¬yRA×Ax
10 9 rexbidva zAxzyz¬yRxxzyz¬yRA×Ax
11 10 adantr zAzxzyz¬yRxxzyz¬yRA×Ax
12 11 pm5.74i zAzxzyz¬yRxzAzxzyz¬yRA×Ax
13 12 albii zzAzxzyz¬yRxzzAzxzyz¬yRA×Ax
14 df-fr RFrAzzAzxzyz¬yRx
15 df-fr RA×AFrAzzAzxzyz¬yRA×Ax
16 13 14 15 3bitr4i RFrARA×AFrA