Metamath Proof Explorer


Theorem wfaxpr

Description: The class of well-founded sets models the Axiom of Pairing ax-pr . Part of Corollary II.2.5 of Kunen2 p. 112. (Contributed by Eric Schmidt, 29-Sep-2025)

Ref Expression
Hypothesis wfax.1 W = R1 On
Assertion wfaxpr x W y W z W w W w = x w = y w z

Proof

Step Hyp Ref Expression
1 wfax.1 W = R1 On
2 prwf x R1 On y R1 On x y R1 On
3 1 eleq2i x W x R1 On
4 1 eleq2i y W y R1 On
5 3 4 anbi12i x W y W x R1 On y R1 On
6 1 eleq2i x y W x y R1 On
7 2 5 6 3imtr4i x W y W x y W
8 7 rgen2 x W y W x y W
9 prclaxpr x W y W x y W x W y W z W w W w = x w = y w z
10 8 9 ax-mp x W y W z W w W w = x w = y w z