Metamath Proof Explorer


Theorem wfaxun

Description: The class of well-founded sets models the Axiom of Union ax-un . Part of Corollary II.2.5 of Kunen2 p. 112. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis wfax.1 W = R1 On
Assertion wfaxun x W y W z W w W z w w x z y

Proof

Step Hyp Ref Expression
1 wfax.1 W = R1 On
2 uniclaxun x W x W x W y W z W w W z w w x z y
3 uniwf x R1 On x R1 On
4 1 eleq2i x W x R1 On
5 1 eleq2i x W x R1 On
6 3 4 5 3bitr4i x W x W
7 6 biimpi x W x W
8 2 7 mprg x W y W z W w W z w w x z y