Metamath Proof Explorer


Theorem uniclaxun

Description: A class that is closed under the union operation models the Axiom of Union ax-un . Lemma II.2.4(5) of Kunen2 p. 111. (Contributed by Eric Schmidt, 1-Oct-2025)

Ref Expression
Assertion uniclaxun x M x M x M y M z M w M z w w x z y

Proof

Step Hyp Ref Expression
1 rexex w M z w w x w z w w x
2 eluni z x w z w w x
3 1 2 sylibr w M z w w x z x
4 3 rgenw z M w M z w w x z x
5 eleq2 y = x z y z x
6 5 imbi2d y = x w M z w w x z y w M z w w x z x
7 6 ralbidv y = x z M w M z w w x z y z M w M z w w x z x
8 7 rspcev x M z M w M z w w x z x y M z M w M z w w x z y
9 4 8 mpan2 x M y M z M w M z w w x z y
10 9 ralimi x M x M x M y M z M w M z w w x z y