Metamath Proof Explorer


Theorem uniclaxun

Description: A class that is closed under the union operation models the Axiom of Union ax-un . Lemma II.2.4(5) of Kunen2 p. 111. (Contributed by Eric Schmidt, 1-Oct-2025)

Ref Expression
Assertion uniclaxun ( ∀ 𝑥𝑀 𝑥𝑀 → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 rexex ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → ∃ 𝑤 ( 𝑧𝑤𝑤𝑥 ) )
2 eluni ( 𝑧 𝑥 ↔ ∃ 𝑤 ( 𝑧𝑤𝑤𝑥 ) )
3 1 2 sylibr ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧 𝑥 )
4 3 rgenw 𝑧𝑀 ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧 𝑥 )
5 eleq2 ( 𝑦 = 𝑥 → ( 𝑧𝑦𝑧 𝑥 ) )
6 5 imbi2d ( 𝑦 = 𝑥 → ( ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) ↔ ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧 𝑥 ) ) )
7 6 ralbidv ( 𝑦 = 𝑥 → ( ∀ 𝑧𝑀 ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) ↔ ∀ 𝑧𝑀 ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧 𝑥 ) ) )
8 7 rspcev ( ( 𝑥𝑀 ∧ ∀ 𝑧𝑀 ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧 𝑥 ) ) → ∃ 𝑦𝑀𝑧𝑀 ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) )
9 4 8 mpan2 ( 𝑥𝑀 → ∃ 𝑦𝑀𝑧𝑀 ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) )
10 9 ralimi ( ∀ 𝑥𝑀 𝑥𝑀 → ∀ 𝑥𝑀𝑦𝑀𝑧𝑀 ( ∃ 𝑤𝑀 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) )