| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexex |
⊢ ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
| 2 |
|
eluni |
⊢ ( 𝑧 ∈ ∪ 𝑥 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
| 3 |
1 2
|
sylibr |
⊢ ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ∪ 𝑥 ) |
| 4 |
3
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝑀 ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ∪ 𝑥 ) |
| 5 |
|
eleq2 |
⊢ ( 𝑦 = ∪ 𝑥 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∪ 𝑥 ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑦 = ∪ 𝑥 → ( ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ∪ 𝑥 ) ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑦 = ∪ 𝑥 → ( ∀ 𝑧 ∈ 𝑀 ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑀 ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ∪ 𝑥 ) ) ) |
| 8 |
7
|
rspcev |
⊢ ( ( ∪ 𝑥 ∈ 𝑀 ∧ ∀ 𝑧 ∈ 𝑀 ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ ∪ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 9 |
4 8
|
mpan2 |
⊢ ( ∪ 𝑥 ∈ 𝑀 → ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 10 |
9
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑀 ∪ 𝑥 ∈ 𝑀 → ∀ 𝑥 ∈ 𝑀 ∃ 𝑦 ∈ 𝑀 ∀ 𝑧 ∈ 𝑀 ( ∃ 𝑤 ∈ 𝑀 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |