Metamath Proof Explorer


Theorem sswfaxreg

Description: A subclass of the class of well-founded sets models the Axiom of Regularity ax-reg . Lemma II.2.4(2) of Kunen2 p. 111. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Assertion sswfaxreg ( 𝑀 ( 𝑅1 “ On ) → ∀ 𝑥𝑀 ( ∃ 𝑦𝑀 𝑦𝑥 → ∃ 𝑦𝑀 ( 𝑦𝑥 ∧ ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 inn0 ( ( 𝑀𝑥 ) ≠ ∅ ↔ ∃ 𝑦𝑀 𝑦𝑥 )
2 ssinss1 ( 𝑀 ( 𝑅1 “ On ) → ( 𝑀𝑥 ) ⊆ ( 𝑅1 “ On ) )
3 vex 𝑥 ∈ V
4 3 inex2 ( 𝑀𝑥 ) ∈ V
5 wffr E Fr ( 𝑅1 “ On )
6 fri ( ( ( ( 𝑀𝑥 ) ∈ V ∧ E Fr ( 𝑅1 “ On ) ) ∧ ( ( 𝑀𝑥 ) ⊆ ( 𝑅1 “ On ) ∧ ( 𝑀𝑥 ) ≠ ∅ ) ) → ∃ 𝑦 ∈ ( 𝑀𝑥 ) ∀ 𝑧 ∈ ( 𝑀𝑥 ) ¬ 𝑧 E 𝑦 )
7 4 5 6 mpanl12 ( ( ( 𝑀𝑥 ) ⊆ ( 𝑅1 “ On ) ∧ ( 𝑀𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑀𝑥 ) ∀ 𝑧 ∈ ( 𝑀𝑥 ) ¬ 𝑧 E 𝑦 )
8 2 7 sylan ( ( 𝑀 ( 𝑅1 “ On ) ∧ ( 𝑀𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑀𝑥 ) ∀ 𝑧 ∈ ( 𝑀𝑥 ) ¬ 𝑧 E 𝑦 )
9 ralin ( ∀ 𝑧 ∈ ( 𝑀𝑥 ) ¬ 𝑧 E 𝑦 ↔ ∀ 𝑧𝑀 ( 𝑧𝑥 → ¬ 𝑧 E 𝑦 ) )
10 con2b ( ( 𝑧𝑥 → ¬ 𝑧 E 𝑦 ) ↔ ( 𝑧 E 𝑦 → ¬ 𝑧𝑥 ) )
11 epel ( 𝑧 E 𝑦𝑧𝑦 )
12 11 imbi1i ( ( 𝑧 E 𝑦 → ¬ 𝑧𝑥 ) ↔ ( 𝑧𝑦 → ¬ 𝑧𝑥 ) )
13 10 12 bitri ( ( 𝑧𝑥 → ¬ 𝑧 E 𝑦 ) ↔ ( 𝑧𝑦 → ¬ 𝑧𝑥 ) )
14 13 ralbii ( ∀ 𝑧𝑀 ( 𝑧𝑥 → ¬ 𝑧 E 𝑦 ) ↔ ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) )
15 9 14 bitri ( ∀ 𝑧 ∈ ( 𝑀𝑥 ) ¬ 𝑧 E 𝑦 ↔ ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) )
16 15 rexbii ( ∃ 𝑦 ∈ ( 𝑀𝑥 ) ∀ 𝑧 ∈ ( 𝑀𝑥 ) ¬ 𝑧 E 𝑦 ↔ ∃ 𝑦 ∈ ( 𝑀𝑥 ) ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) )
17 rexin ( ∃ 𝑦 ∈ ( 𝑀𝑥 ) ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ↔ ∃ 𝑦𝑀 ( 𝑦𝑥 ∧ ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) )
18 16 17 bitri ( ∃ 𝑦 ∈ ( 𝑀𝑥 ) ∀ 𝑧 ∈ ( 𝑀𝑥 ) ¬ 𝑧 E 𝑦 ↔ ∃ 𝑦𝑀 ( 𝑦𝑥 ∧ ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) )
19 8 18 sylib ( ( 𝑀 ( 𝑅1 “ On ) ∧ ( 𝑀𝑥 ) ≠ ∅ ) → ∃ 𝑦𝑀 ( 𝑦𝑥 ∧ ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) )
20 1 19 sylan2br ( ( 𝑀 ( 𝑅1 “ On ) ∧ ∃ 𝑦𝑀 𝑦𝑥 ) → ∃ 𝑦𝑀 ( 𝑦𝑥 ∧ ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) )
21 20 ex ( 𝑀 ( 𝑅1 “ On ) → ( ∃ 𝑦𝑀 𝑦𝑥 → ∃ 𝑦𝑀 ( 𝑦𝑥 ∧ ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) ) )
22 21 ralrimivw ( 𝑀 ( 𝑅1 “ On ) → ∀ 𝑥𝑀 ( ∃ 𝑦𝑀 𝑦𝑥 → ∃ 𝑦𝑀 ( 𝑦𝑥 ∧ ∀ 𝑧𝑀 ( 𝑧𝑦 → ¬ 𝑧𝑥 ) ) ) )