| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inn0 |
⊢ ( ( 𝑀 ∩ 𝑥 ) ≠ ∅ ↔ ∃ 𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 ) |
| 2 |
|
ssinss1 |
⊢ ( 𝑀 ⊆ ∪ ( 𝑅1 “ On ) → ( 𝑀 ∩ 𝑥 ) ⊆ ∪ ( 𝑅1 “ On ) ) |
| 3 |
|
vex |
⊢ 𝑥 ∈ V |
| 4 |
3
|
inex2 |
⊢ ( 𝑀 ∩ 𝑥 ) ∈ V |
| 5 |
|
wffr |
⊢ E Fr ∪ ( 𝑅1 “ On ) |
| 6 |
|
fri |
⊢ ( ( ( ( 𝑀 ∩ 𝑥 ) ∈ V ∧ E Fr ∪ ( 𝑅1 “ On ) ) ∧ ( ( 𝑀 ∩ 𝑥 ) ⊆ ∪ ( 𝑅1 “ On ) ∧ ( 𝑀 ∩ 𝑥 ) ≠ ∅ ) ) → ∃ 𝑦 ∈ ( 𝑀 ∩ 𝑥 ) ∀ 𝑧 ∈ ( 𝑀 ∩ 𝑥 ) ¬ 𝑧 E 𝑦 ) |
| 7 |
4 5 6
|
mpanl12 |
⊢ ( ( ( 𝑀 ∩ 𝑥 ) ⊆ ∪ ( 𝑅1 “ On ) ∧ ( 𝑀 ∩ 𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑀 ∩ 𝑥 ) ∀ 𝑧 ∈ ( 𝑀 ∩ 𝑥 ) ¬ 𝑧 E 𝑦 ) |
| 8 |
2 7
|
sylan |
⊢ ( ( 𝑀 ⊆ ∪ ( 𝑅1 “ On ) ∧ ( 𝑀 ∩ 𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑀 ∩ 𝑥 ) ∀ 𝑧 ∈ ( 𝑀 ∩ 𝑥 ) ¬ 𝑧 E 𝑦 ) |
| 9 |
|
ralin |
⊢ ( ∀ 𝑧 ∈ ( 𝑀 ∩ 𝑥 ) ¬ 𝑧 E 𝑦 ↔ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦 ) ) |
| 10 |
|
con2b |
⊢ ( ( 𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦 ) ↔ ( 𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) |
| 11 |
|
epel |
⊢ ( 𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦 ) |
| 12 |
11
|
imbi1i |
⊢ ( ( 𝑧 E 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ↔ ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) |
| 13 |
10 12
|
bitri |
⊢ ( ( 𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦 ) ↔ ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) |
| 14 |
13
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 E 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) |
| 15 |
9 14
|
bitri |
⊢ ( ∀ 𝑧 ∈ ( 𝑀 ∩ 𝑥 ) ¬ 𝑧 E 𝑦 ↔ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) |
| 16 |
15
|
rexbii |
⊢ ( ∃ 𝑦 ∈ ( 𝑀 ∩ 𝑥 ) ∀ 𝑧 ∈ ( 𝑀 ∩ 𝑥 ) ¬ 𝑧 E 𝑦 ↔ ∃ 𝑦 ∈ ( 𝑀 ∩ 𝑥 ) ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) |
| 17 |
|
rexin |
⊢ ( ∃ 𝑦 ∈ ( 𝑀 ∩ 𝑥 ) ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) ) |
| 18 |
16 17
|
bitri |
⊢ ( ∃ 𝑦 ∈ ( 𝑀 ∩ 𝑥 ) ∀ 𝑧 ∈ ( 𝑀 ∩ 𝑥 ) ¬ 𝑧 E 𝑦 ↔ ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) ) |
| 19 |
8 18
|
sylib |
⊢ ( ( 𝑀 ⊆ ∪ ( 𝑅1 “ On ) ∧ ( 𝑀 ∩ 𝑥 ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) ) |
| 20 |
1 19
|
sylan2br |
⊢ ( ( 𝑀 ⊆ ∪ ( 𝑅1 “ On ) ∧ ∃ 𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 ) → ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) ) |
| 21 |
20
|
ex |
⊢ ( 𝑀 ⊆ ∪ ( 𝑅1 “ On ) → ( ∃ 𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) |
| 22 |
21
|
ralrimivw |
⊢ ( 𝑀 ⊆ ∪ ( 𝑅1 “ On ) → ∀ 𝑥 ∈ 𝑀 ( ∃ 𝑦 ∈ 𝑀 𝑦 ∈ 𝑥 → ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) |