| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano1 |
⊢ ∅ ∈ ω |
| 2 |
|
ssel |
⊢ ( ω ⊆ 𝑀 → ( ∅ ∈ ω → ∅ ∈ 𝑀 ) ) |
| 3 |
1 2
|
mpi |
⊢ ( ω ⊆ 𝑀 → ∅ ∈ 𝑀 ) |
| 4 |
|
noel |
⊢ ¬ 𝑧 ∈ ∅ |
| 5 |
4
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ ∅ |
| 6 |
|
eleq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ ω ↔ ∅ ∈ ω ) ) |
| 7 |
|
eleq2 |
⊢ ( 𝑦 = ∅ → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∅ ) ) |
| 8 |
7
|
notbid |
⊢ ( 𝑦 = ∅ → ( ¬ 𝑧 ∈ 𝑦 ↔ ¬ 𝑧 ∈ ∅ ) ) |
| 9 |
8
|
ralbidv |
⊢ ( 𝑦 = ∅ → ( ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ↔ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ ∅ ) ) |
| 10 |
6 9
|
anbi12d |
⊢ ( 𝑦 = ∅ → ( ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ↔ ( ∅ ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ ∅ ) ) ) |
| 11 |
10
|
rspcev |
⊢ ( ( ∅ ∈ 𝑀 ∧ ( ∅ ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ ∅ ) ) → ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ) |
| 12 |
1 5 11
|
mpanr12 |
⊢ ( ∅ ∈ 𝑀 → ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ) |
| 13 |
3 12
|
syl |
⊢ ( ω ⊆ 𝑀 → ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ) |
| 14 |
|
ssel |
⊢ ( ω ⊆ 𝑀 → ( suc 𝑦 ∈ ω → suc 𝑦 ∈ 𝑀 ) ) |
| 15 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
| 16 |
14 15
|
impel |
⊢ ( ( ω ⊆ 𝑀 ∧ 𝑦 ∈ ω ) → suc 𝑦 ∈ 𝑀 ) |
| 17 |
15
|
adantl |
⊢ ( ( ω ⊆ 𝑀 ∧ 𝑦 ∈ ω ) → suc 𝑦 ∈ ω ) |
| 18 |
|
vex |
⊢ 𝑤 ∈ V |
| 19 |
18
|
elsuc |
⊢ ( 𝑤 ∈ suc 𝑦 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) |
| 20 |
19
|
rgenw |
⊢ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ suc 𝑦 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) |
| 21 |
|
eleq1 |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑧 ∈ ω ↔ suc 𝑦 ∈ ω ) ) |
| 22 |
|
eleq2 |
⊢ ( 𝑧 = suc 𝑦 → ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ suc 𝑦 ) ) |
| 23 |
22
|
bibi1d |
⊢ ( 𝑧 = suc 𝑦 → ( ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ↔ ( 𝑤 ∈ suc 𝑦 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 24 |
23
|
ralbidv |
⊢ ( 𝑧 = suc 𝑦 → ( ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ↔ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ suc 𝑦 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 25 |
21 24
|
anbi12d |
⊢ ( 𝑧 = suc 𝑦 → ( ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ↔ ( suc 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ suc 𝑦 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 26 |
25
|
rspcev |
⊢ ( ( suc 𝑦 ∈ 𝑀 ∧ ( suc 𝑦 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ suc 𝑦 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 27 |
20 26
|
mpanr2 |
⊢ ( ( suc 𝑦 ∈ 𝑀 ∧ suc 𝑦 ∈ ω ) → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 28 |
16 17 27
|
syl2anc |
⊢ ( ( ω ⊆ 𝑀 ∧ 𝑦 ∈ ω ) → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 29 |
28
|
ex |
⊢ ( ω ⊆ 𝑀 → ( 𝑦 ∈ ω → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 30 |
29
|
ralrimivw |
⊢ ( ω ⊆ 𝑀 → ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 31 |
|
eleq2 |
⊢ ( 𝑥 = ω → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ω ) ) |
| 32 |
31
|
anbi1d |
⊢ ( 𝑥 = ω → ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ↔ ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 33 |
32
|
rexbidv |
⊢ ( 𝑥 = ω → ( ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ) ) |
| 34 |
|
eleq2 |
⊢ ( 𝑥 = ω → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ ω ) ) |
| 35 |
34
|
anbi1d |
⊢ ( 𝑥 = ω → ( ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ↔ ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 36 |
35
|
rexbidv |
⊢ ( 𝑥 = ω → ( ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ↔ ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 37 |
31 36
|
imbi12d |
⊢ ( 𝑥 = ω → ( ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ↔ ( 𝑦 ∈ ω → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
| 38 |
37
|
ralbidv |
⊢ ( 𝑥 = ω → ( ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ↔ ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
| 39 |
33 38
|
anbi12d |
⊢ ( 𝑥 = ω → ( ( ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ↔ ( ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) ) |
| 40 |
39
|
rspcev |
⊢ ( ( ω ∈ 𝑀 ∧ ( ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) → ∃ 𝑥 ∈ 𝑀 ( ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
| 41 |
40
|
expcom |
⊢ ( ( ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ ω → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ ω ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) → ( ω ∈ 𝑀 → ∃ 𝑥 ∈ 𝑀 ( ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) ) |
| 42 |
13 30 41
|
syl2anc |
⊢ ( ω ⊆ 𝑀 → ( ω ∈ 𝑀 → ∃ 𝑥 ∈ 𝑀 ( ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( ω ⊆ 𝑀 ∧ ω ∈ 𝑀 ) → ∃ 𝑥 ∈ 𝑀 ( ∃ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑀 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑀 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑀 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |