Metamath Proof Explorer


Theorem wfaxun

Description: The class of well-founded sets models the Axiom of Union ax-un . Part of Corollary II.2.5 of Kunen2 p. 112. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis wfax.1 𝑊 = ( 𝑅1 “ On )
Assertion wfaxun 𝑥𝑊𝑦𝑊𝑧𝑊 ( ∃ 𝑤𝑊 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 )

Proof

Step Hyp Ref Expression
1 wfax.1 𝑊 = ( 𝑅1 “ On )
2 uniclaxun ( ∀ 𝑥𝑊 𝑥𝑊 → ∀ 𝑥𝑊𝑦𝑊𝑧𝑊 ( ∃ 𝑤𝑊 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 ) )
3 uniwf ( 𝑥 ( 𝑅1 “ On ) ↔ 𝑥 ( 𝑅1 “ On ) )
4 1 eleq2i ( 𝑥𝑊𝑥 ( 𝑅1 “ On ) )
5 1 eleq2i ( 𝑥𝑊 𝑥 ( 𝑅1 “ On ) )
6 3 4 5 3bitr4i ( 𝑥𝑊 𝑥𝑊 )
7 6 biimpi ( 𝑥𝑊 𝑥𝑊 )
8 2 7 mprg 𝑥𝑊𝑦𝑊𝑧𝑊 ( ∃ 𝑤𝑊 ( 𝑧𝑤𝑤𝑥 ) → 𝑧𝑦 )