Metamath Proof Explorer


Theorem wfaxreg

Description: The class of well-founded sets models the Axiom of Regularity ax-reg . Part of Corollary II.2.5 of Kunen2 p. 112. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis wfax.1 W = R1 On
Assertion wfaxreg x W y W y x y W y x z W z y ¬ z x

Proof

Step Hyp Ref Expression
1 wfax.1 W = R1 On
2 1 eqimssi W R1 On
3 sswfaxreg W R1 On x W y W y x y W y x z W z y ¬ z x
4 2 3 ax-mp x W y W y x y W y x z W z y ¬ z x