Metamath Proof Explorer


Theorem wfaxinf2

Description: The class of well-founded sets models the Axiom of Infinity ax-inf2 . Part of Corollary II.2.12 of Kunen2 p. 114. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis wfax.1 W = R1 On
Assertion wfaxinf2 x W y W y x z W ¬ z y y W y x z W z x w W w z w y w = y

Proof

Step Hyp Ref Expression
1 wfax.1 W = R1 On
2 trwf Tr R1 On
3 treq W = R1 On Tr W Tr R1 On
4 1 3 ax-mp Tr W Tr R1 On
5 2 4 mpbir Tr W
6 onwf On R1 On
7 omelon ω On
8 6 7 sselii ω R1 On
9 8 1 eleqtrri ω W
10 omelaxinf2 Tr W ω W x W y W y x z W ¬ z y y W y x z W z x w W w z w y w = y
11 5 9 10 mp2an x W y W y x z W ¬ z y y W y x z W z x w W w z w y w = y