| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfax.1 |
⊢ 𝑊 = ∪ ( 𝑅1 “ On ) |
| 2 |
|
trwf |
⊢ Tr ∪ ( 𝑅1 “ On ) |
| 3 |
|
treq |
⊢ ( 𝑊 = ∪ ( 𝑅1 “ On ) → ( Tr 𝑊 ↔ Tr ∪ ( 𝑅1 “ On ) ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( Tr 𝑊 ↔ Tr ∪ ( 𝑅1 “ On ) ) |
| 5 |
2 4
|
mpbir |
⊢ Tr 𝑊 |
| 6 |
|
onwf |
⊢ On ⊆ ∪ ( 𝑅1 “ On ) |
| 7 |
|
omelon |
⊢ ω ∈ On |
| 8 |
6 7
|
sselii |
⊢ ω ∈ ∪ ( 𝑅1 “ On ) |
| 9 |
8 1
|
eleqtrri |
⊢ ω ∈ 𝑊 |
| 10 |
|
omelaxinf2 |
⊢ ( ( Tr 𝑊 ∧ ω ∈ 𝑊 ) → ∃ 𝑥 ∈ 𝑊 ( ∃ 𝑦 ∈ 𝑊 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑊 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑊 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑊 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) ) |
| 11 |
5 9 10
|
mp2an |
⊢ ∃ 𝑥 ∈ 𝑊 ( ∃ 𝑦 ∈ 𝑊 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑊 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑊 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ 𝑊 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ∈ 𝑊 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |