Metamath Proof Explorer


Theorem wfaxinf2

Description: The class of well-founded sets models the Axiom of Infinity ax-inf2 . Part of Corollary II.2.12 of Kunen2 p. 114. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis wfax.1 𝑊 = ( 𝑅1 “ On )
Assertion wfaxinf2 𝑥𝑊 ( ∃ 𝑦𝑊 ( 𝑦𝑥 ∧ ∀ 𝑧𝑊 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦𝑊 ( 𝑦𝑥 → ∃ 𝑧𝑊 ( 𝑧𝑥 ∧ ∀ 𝑤𝑊 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 wfax.1 𝑊 = ( 𝑅1 “ On )
2 trwf Tr ( 𝑅1 “ On )
3 treq ( 𝑊 = ( 𝑅1 “ On ) → ( Tr 𝑊 ↔ Tr ( 𝑅1 “ On ) ) )
4 1 3 ax-mp ( Tr 𝑊 ↔ Tr ( 𝑅1 “ On ) )
5 2 4 mpbir Tr 𝑊
6 onwf On ⊆ ( 𝑅1 “ On )
7 omelon ω ∈ On
8 6 7 sselii ω ∈ ( 𝑅1 “ On )
9 8 1 eleqtrri ω ∈ 𝑊
10 omelaxinf2 ( ( Tr 𝑊 ∧ ω ∈ 𝑊 ) → ∃ 𝑥𝑊 ( ∃ 𝑦𝑊 ( 𝑦𝑥 ∧ ∀ 𝑧𝑊 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦𝑊 ( 𝑦𝑥 → ∃ 𝑧𝑊 ( 𝑧𝑥 ∧ ∀ 𝑤𝑊 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) ) )
11 5 9 10 mp2an 𝑥𝑊 ( ∃ 𝑦𝑊 ( 𝑦𝑥 ∧ ∀ 𝑧𝑊 ¬ 𝑧𝑦 ) ∧ ∀ 𝑦𝑊 ( 𝑦𝑥 → ∃ 𝑧𝑊 ( 𝑧𝑥 ∧ ∀ 𝑤𝑊 ( 𝑤𝑧 ↔ ( 𝑤𝑦𝑤 = 𝑦 ) ) ) ) )