Metamath Proof Explorer


Theorem wfis

Description: Well-Ordered Induction Schema. If all elements less than a given set x of the well-ordered class A have a property (induction hypothesis), then all elements of A have that property. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis.1 RWeA
wfis.2 RSeA
wfis.3 yAzPredRAy[˙z/y]˙φφ
Assertion wfis yAφ

Proof

Step Hyp Ref Expression
1 wfis.1 RWeA
2 wfis.2 RSeA
3 wfis.3 yAzPredRAy[˙z/y]˙φφ
4 3 wfisg RWeARSeAyAφ
5 1 2 4 mp2an yAφ
6 5 rspec yAφ