Metamath Proof Explorer
		
		
		
		Description:  Well-Ordered Induction schema, using implicit substitution.
       (Contributed by Scott Fenton, 29-Jan-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | wfis2f.1 |  | 
					
						|  |  | wfis2f.2 |  | 
					
						|  |  | wfis2f.3 |  | 
					
						|  |  | wfis2f.4 |  | 
					
						|  |  | wfis2f.5 |  | 
				
					|  | Assertion | wfis2f |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfis2f.1 |  | 
						
							| 2 |  | wfis2f.2 |  | 
						
							| 3 |  | wfis2f.3 |  | 
						
							| 4 |  | wfis2f.4 |  | 
						
							| 5 |  | wfis2f.5 |  | 
						
							| 6 | 3 4 5 | wfis2fg |  | 
						
							| 7 | 1 2 6 | mp2an |  | 
						
							| 8 | 7 | rspec |  |