Metamath Proof Explorer


Theorem wfis2f

Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis2f.1 RWeA
wfis2f.2 RSeA
wfis2f.3 yψ
wfis2f.4 y=zφψ
wfis2f.5 yAzPredRAyψφ
Assertion wfis2f yAφ

Proof

Step Hyp Ref Expression
1 wfis2f.1 RWeA
2 wfis2f.2 RSeA
3 wfis2f.3 yψ
4 wfis2f.4 y=zφψ
5 wfis2f.5 yAzPredRAyψφ
6 3 4 5 wfis2fg RWeARSeAyAφ
7 1 2 6 mp2an yAφ
8 7 rspec yAφ