Metamath Proof Explorer


Theorem wfr1OLD

Description: Obsolete version of wfr1 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 22-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfr1OLD.1 RWeA
wfr1OLD.2 RSeA
wfr1OLD.3 F=wrecsRAG
Assertion wfr1OLD FFnA

Proof

Step Hyp Ref Expression
1 wfr1OLD.1 RWeA
2 wfr1OLD.2 RSeA
3 wfr1OLD.3 F=wrecsRAG
4 1 2 3 wfrfunOLD FunF
5 eqid FzGFPredRAz=FzGFPredRAz
6 1 2 3 5 wfrlem16OLD domF=A
7 df-fn FFnAFunFdomF=A
8 4 6 7 mpbir2an FFnA