Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-2spsbbi
Next ⟩
wl-lem-exsb
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-2spsbbi
Description:
spsbbi
applied twice.
(Contributed by
Wolf Lammen
, 5-Aug-2023)
Ref
Expression
Assertion
wl-2spsbbi
⊢
∀
a
∀
b
φ
↔
ψ
→
y
b
x
a
φ
↔
y
b
x
a
ψ
Proof
Step
Hyp
Ref
Expression
1
alcom
⊢
∀
a
∀
b
φ
↔
ψ
↔
∀
b
∀
a
φ
↔
ψ
2
nfa1
⊢
Ⅎ
b
∀
b
∀
a
φ
↔
ψ
3
nfa1
⊢
Ⅎ
a
∀
a
φ
↔
ψ
4
sp
⊢
∀
a
φ
↔
ψ
→
φ
↔
ψ
5
3
4
sbbid
⊢
∀
a
φ
↔
ψ
→
x
a
φ
↔
x
a
ψ
6
5
sps
⊢
∀
b
∀
a
φ
↔
ψ
→
x
a
φ
↔
x
a
ψ
7
2
6
sbbid
⊢
∀
b
∀
a
φ
↔
ψ
→
y
b
x
a
φ
↔
y
b
x
a
ψ
8
1
7
sylbi
⊢
∀
a
∀
b
φ
↔
ψ
→
y
b
x
a
φ
↔
y
b
x
a
ψ