Metamath Proof Explorer


Theorem wl-2spsbbi

Description: spsbbi applied twice. (Contributed by Wolf Lammen, 5-Aug-2023)

Ref Expression
Assertion wl-2spsbbi ( ∀ 𝑎𝑏 ( 𝜑𝜓 ) → ( [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 alcom ( ∀ 𝑎𝑏 ( 𝜑𝜓 ) ↔ ∀ 𝑏𝑎 ( 𝜑𝜓 ) )
2 nfa1 𝑏𝑏𝑎 ( 𝜑𝜓 )
3 nfa1 𝑎𝑎 ( 𝜑𝜓 )
4 sp ( ∀ 𝑎 ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
5 3 4 sbbid ( ∀ 𝑎 ( 𝜑𝜓 ) → ( [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑥 / 𝑎 ] 𝜓 ) )
6 5 sps ( ∀ 𝑏𝑎 ( 𝜑𝜓 ) → ( [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑥 / 𝑎 ] 𝜓 ) )
7 2 6 sbbid ( ∀ 𝑏𝑎 ( 𝜑𝜓 ) → ( [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜓 ) )
8 1 7 sylbi ( ∀ 𝑎𝑏 ( 𝜑𝜓 ) → ( [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜓 ) )