Description: spsbbi applied twice. (Contributed by Wolf Lammen, 5-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-2spsbbi | ⊢ ( ∀ 𝑎 ∀ 𝑏 ( 𝜑 ↔ 𝜓 ) → ( [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom | ⊢ ( ∀ 𝑎 ∀ 𝑏 ( 𝜑 ↔ 𝜓 ) ↔ ∀ 𝑏 ∀ 𝑎 ( 𝜑 ↔ 𝜓 ) ) | |
2 | nfa1 | ⊢ Ⅎ 𝑏 ∀ 𝑏 ∀ 𝑎 ( 𝜑 ↔ 𝜓 ) | |
3 | nfa1 | ⊢ Ⅎ 𝑎 ∀ 𝑎 ( 𝜑 ↔ 𝜓 ) | |
4 | sp | ⊢ ( ∀ 𝑎 ( 𝜑 ↔ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) | |
5 | 3 4 | sbbid | ⊢ ( ∀ 𝑎 ( 𝜑 ↔ 𝜓 ) → ( [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑥 / 𝑎 ] 𝜓 ) ) |
6 | 5 | sps | ⊢ ( ∀ 𝑏 ∀ 𝑎 ( 𝜑 ↔ 𝜓 ) → ( [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑥 / 𝑎 ] 𝜓 ) ) |
7 | 2 6 | sbbid | ⊢ ( ∀ 𝑏 ∀ 𝑎 ( 𝜑 ↔ 𝜓 ) → ( [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜓 ) ) |
8 | 1 7 | sylbi | ⊢ ( ∀ 𝑎 ∀ 𝑏 ( 𝜑 ↔ 𝜓 ) → ( [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜑 ↔ [ 𝑦 / 𝑏 ] [ 𝑥 / 𝑎 ] 𝜓 ) ) |