Metamath Proof Explorer


Theorem wl-ax11-lem5

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem5 u u = y u u y φ y φ

Proof

Step Hyp Ref Expression
1 sbequ12r u = y u y φ φ
2 1 sps u u = y u y φ φ
3 2 dral1 u u = y u u y φ y φ