Metamath Proof Explorer


Theorem wl-ax11-lem9

Description: The easy part when x coincides with y . (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem9 xx=yyxφxyφ

Proof

Step Hyp Ref Expression
1 biidd xx=yφφ
2 1 dral1 xx=yxφyφ
3 2 aecoms yy=xxφyφ
4 3 dral1 yy=xyxφxyφ
5 4 aecoms xx=yyxφxyφ