Description: The easy part when x coincides with y . (Contributed by Wolf Lammen, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-ax11-lem9 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜑 ) ) | |
2 | 1 | dral1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜑 ) ) |
3 | 2 | aecoms | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜑 ) ) |
4 | 3 | dral1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑦 ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜑 ) ) |
5 | 4 | aecoms | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 𝜑 ) ) |