Metamath Proof Explorer


Theorem wl-ax11-lem9

Description: The easy part when x coincides with y . (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem9 ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦𝑥 𝜑 ↔ ∀ 𝑥𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 biidd ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝜑𝜑 ) )
2 1 dral1 ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜑 ) )
3 2 aecoms ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 𝜑 ) )
4 3 dral1 ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑦𝑥 𝜑 ↔ ∀ 𝑥𝑦 𝜑 ) )
5 4 aecoms ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦𝑥 𝜑 ↔ ∀ 𝑥𝑦 𝜑 ) )