Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-ax11-lem9
Next ⟩
wl-ax11-lem10
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-ax11-lem9
Description:
The easy part when
x
coincides with
y
.
(Contributed by
Wolf Lammen
, 30-Jun-2019)
Ref
Expression
Assertion
wl-ax11-lem9
⊢
∀
x
x
=
y
→
∀
y
∀
x
φ
↔
∀
x
∀
y
φ
Proof
Step
Hyp
Ref
Expression
1
biidd
⊢
∀
x
x
=
y
→
φ
↔
φ
2
1
dral1
⊢
∀
x
x
=
y
→
∀
x
φ
↔
∀
y
φ
3
2
aecoms
⊢
∀
y
y
=
x
→
∀
x
φ
↔
∀
y
φ
4
3
dral1
⊢
∀
y
y
=
x
→
∀
y
∀
x
φ
↔
∀
x
∀
y
φ
5
4
aecoms
⊢
∀
x
x
=
y
→
∀
y
∀
x
φ
↔
∀
x
∀
y
φ