Metamath Proof Explorer


Theorem wl-clabt

Description: Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv . (Contributed by Wolf Lammen, 29-May-2023)

Ref Expression
Hypothesis wl-clabt.nf x φ
Assertion wl-clabt φ x | ψ = x | φ ψ

Proof

Step Hyp Ref Expression
1 wl-clabt.nf x φ
2 biimt φ ψ φ ψ
3 1 2 sbbid φ y x ψ y x φ ψ
4 df-clab y x | ψ y x ψ
5 df-clab y x | φ ψ y x φ ψ
6 3 4 5 3bitr4g φ y x | ψ y x | φ ψ
7 6 eqrdv φ x | ψ = x | φ ψ