Description: Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv . (Contributed by Wolf Lammen, 29-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wl-clabt.nf | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | wl-clabt | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-clabt.nf | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | biimt | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 → 𝜓 ) ) ) | |
| 3 | 1 2 | sbbid | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) ) |
| 4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 5 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ) ) |
| 7 | 6 | eqrdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ) |