Description: Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv . (Contributed by Wolf Lammen, 29-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wl-clabt.nf | ⊢ Ⅎ 𝑥 𝜑 | |
Assertion | wl-clabt | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-clabt.nf | ⊢ Ⅎ 𝑥 𝜑 | |
2 | biimt | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 → 𝜓 ) ) ) | |
3 | 1 2 | sbbid | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) ) |
4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
5 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) | |
6 | 3 4 5 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ) ) |
7 | 6 | eqrdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ) |