Metamath Proof Explorer


Theorem wl-clabt

Description: Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv . (Contributed by Wolf Lammen, 29-May-2023)

Ref Expression
Hypothesis wl-clabt.nf
|- F/ x ph
Assertion wl-clabt
|- ( ph -> { x | ps } = { x | ( ph -> ps ) } )

Proof

Step Hyp Ref Expression
1 wl-clabt.nf
 |-  F/ x ph
2 biimt
 |-  ( ph -> ( ps <-> ( ph -> ps ) ) )
3 1 2 sbbid
 |-  ( ph -> ( [ y / x ] ps <-> [ y / x ] ( ph -> ps ) ) )
4 df-clab
 |-  ( y e. { x | ps } <-> [ y / x ] ps )
5 df-clab
 |-  ( y e. { x | ( ph -> ps ) } <-> [ y / x ] ( ph -> ps ) )
6 3 4 5 3bitr4g
 |-  ( ph -> ( y e. { x | ps } <-> y e. { x | ( ph -> ps ) } ) )
7 6 eqrdv
 |-  ( ph -> { x | ps } = { x | ( ph -> ps ) } )