Description: Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv . (Contributed by Wolf Lammen, 29-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wl-clabt.nf | |- F/ x ph |
|
Assertion | wl-clabt | |- ( ph -> { x | ps } = { x | ( ph -> ps ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-clabt.nf | |- F/ x ph |
|
2 | biimt | |- ( ph -> ( ps <-> ( ph -> ps ) ) ) |
|
3 | 1 2 | sbbid | |- ( ph -> ( [ y / x ] ps <-> [ y / x ] ( ph -> ps ) ) ) |
4 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
5 | df-clab | |- ( y e. { x | ( ph -> ps ) } <-> [ y / x ] ( ph -> ps ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( ph -> ( y e. { x | ps } <-> y e. { x | ( ph -> ps ) } ) ) |
7 | 6 | eqrdv | |- ( ph -> { x | ps } = { x | ( ph -> ps ) } ) |