Description: Using class abstraction in a context. For a version based on fewer axioms see wl-clabtv . (Contributed by Wolf Lammen, 29-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wl-clabt.nf | |- F/ x ph |
|
| Assertion | wl-clabt | |- ( ph -> { x | ps } = { x | ( ph -> ps ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-clabt.nf | |- F/ x ph |
|
| 2 | biimt | |- ( ph -> ( ps <-> ( ph -> ps ) ) ) |
|
| 3 | 1 2 | sbbid | |- ( ph -> ( [ y / x ] ps <-> [ y / x ] ( ph -> ps ) ) ) |
| 4 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
| 5 | df-clab | |- ( y e. { x | ( ph -> ps ) } <-> [ y / x ] ( ph -> ps ) ) |
|
| 6 | 3 4 5 | 3bitr4g | |- ( ph -> ( y e. { x | ps } <-> y e. { x | ( ph -> ps ) } ) ) |
| 7 | 6 | eqrdv | |- ( ph -> { x | ps } = { x | ( ph -> ps ) } ) |