Metamath Proof Explorer


Theorem wl-clabtv

Description: Using class abstraction in a context, requiring x and ph disjoint, but based on fewer axioms than wl-clabt . (Contributed by Wolf Lammen, 29-May-2023)

Ref Expression
Assertion wl-clabtv
|- ( ph -> { x | ps } = { x | ( ph -> ps ) } )

Proof

Step Hyp Ref Expression
1 biimt
 |-  ( ph -> ( ps <-> ( ph -> ps ) ) )
2 1 sbbidv
 |-  ( ph -> ( [ y / x ] ps <-> [ y / x ] ( ph -> ps ) ) )
3 df-clab
 |-  ( y e. { x | ps } <-> [ y / x ] ps )
4 df-clab
 |-  ( y e. { x | ( ph -> ps ) } <-> [ y / x ] ( ph -> ps ) )
5 2 3 4 3bitr4g
 |-  ( ph -> ( y e. { x | ps } <-> y e. { x | ( ph -> ps ) } ) )
6 5 eqrdv
 |-  ( ph -> { x | ps } = { x | ( ph -> ps ) } )