Description: Using class abstraction in a context, requiring x and ph disjoint, but based on fewer axioms than wl-clabt . (Contributed by Wolf Lammen, 29-May-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-clabtv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 → 𝜓 ) ) ) | |
2 | 1 | sbbidv | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) ) |
3 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) | |
5 | 2 3 4 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ) ) |
6 | 5 | eqrdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ ( 𝜑 → 𝜓 ) } ) |