Metamath Proof Explorer


Theorem wl-equsb4

Description: Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable condition. (Contributed by Wolf Lammen, 26-Jun-2019)

Ref Expression
Assertion wl-equsb4 ¬ x x = z y x y = z y = z

Proof

Step Hyp Ref Expression
1 nfeqf ¬ x x = y ¬ x x = z x y = z
2 1 ex ¬ x x = y ¬ x x = z x y = z
3 sbft x y = z y x y = z y = z
4 2 3 syl6com ¬ x x = z ¬ x x = y y x y = z y = z
5 sbequ12r y = x y x y = z y = z
6 5 equcoms x = y y x y = z y = z
7 6 sps x x = y y x y = z y = z
8 4 7 pm2.61d2 ¬ x x = z y x y = z y = z