Metamath Proof Explorer


Theorem wl-2sb6d

Description: Version of 2sb6 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019)

Ref Expression
Hypotheses wl-2sb6d.1 φ¬yy=x
wl-2sb6d.2 φ¬yy=w
wl-2sb6d.3 φ¬yy=z
wl-2sb6d.4 φ¬xx=z
Assertion wl-2sb6d φzxwyψxyx=zy=wψ

Proof

Step Hyp Ref Expression
1 wl-2sb6d.1 φ¬yy=x
2 wl-2sb6d.2 φ¬yy=w
3 wl-2sb6d.3 φ¬yy=z
4 wl-2sb6d.4 φ¬xx=z
5 1 3 jca φ¬yy=x¬yy=z
6 sb4b ¬xx=zzxwyψxx=zwyψ
7 nfnae x¬yy=w
8 wl-nfnae1 x¬yy=x
9 nfnae x¬yy=z
10 8 9 nfan x¬yy=x¬yy=z
11 7 10 nfan x¬yy=w¬yy=x¬yy=z
12 sb4b ¬yy=wwyψyy=wψ
13 12 imbi2d ¬yy=wx=zwyψx=zyy=wψ
14 impexp x=zy=wψx=zy=wψ
15 14 albii yx=zy=wψyx=zy=wψ
16 nfeqf ¬yy=x¬yy=zyx=z
17 19.21t yx=zyx=zy=wψx=zyy=wψ
18 16 17 syl ¬yy=x¬yy=zyx=zy=wψx=zyy=wψ
19 15 18 bitr2id ¬yy=x¬yy=zx=zyy=wψyx=zy=wψ
20 13 19 sylan9bb ¬yy=w¬yy=x¬yy=zx=zwyψyx=zy=wψ
21 11 20 albid ¬yy=w¬yy=x¬yy=zxx=zwyψxyx=zy=wψ
22 6 21 sylan9bb ¬xx=z¬yy=w¬yy=x¬yy=zzxwyψxyx=zy=wψ
23 4 2 5 22 syl12anc φzxwyψxyx=zy=wψ