Step |
Hyp |
Ref |
Expression |
1 |
|
wl-2sb6d.1 |
⊢ ( 𝜑 → ¬ ∀ 𝑦 𝑦 = 𝑥 ) |
2 |
|
wl-2sb6d.2 |
⊢ ( 𝜑 → ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
3 |
|
wl-2sb6d.3 |
⊢ ( 𝜑 → ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
4 |
|
wl-2sb6d.4 |
⊢ ( 𝜑 → ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
5 |
1 3
|
jca |
⊢ ( 𝜑 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) |
6 |
|
sb4b |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜓 ) ) ) |
7 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑤 |
8 |
|
wl-nfnae1 |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 |
9 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
10 |
8 9
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
11 |
7 10
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑤 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) |
12 |
|
sb4b |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → ( [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
13 |
12
|
imbi2d |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → ( ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜓 ) ↔ ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) ) |
14 |
|
impexp |
⊢ ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ↔ ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ↔ ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
16 |
|
nfeqf |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 = 𝑧 ) |
17 |
|
19.21t |
⊢ ( Ⅎ 𝑦 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜓 ) ) ↔ ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜓 ) ) ↔ ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) ) |
19 |
15 18
|
bitr2id |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ↔ ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |
20 |
13 19
|
sylan9bb |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑤 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) → ( ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |
21 |
11 20
|
albid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑤 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |
22 |
6 21
|
sylan9bb |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑤 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) ) → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |
23 |
4 2 5 22
|
syl12anc |
⊢ ( 𝜑 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |