| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wl-2sb6d.1 |
⊢ ( 𝜑 → ¬ ∀ 𝑦 𝑦 = 𝑥 ) |
| 2 |
|
wl-2sb6d.2 |
⊢ ( 𝜑 → ¬ ∀ 𝑦 𝑦 = 𝑤 ) |
| 3 |
|
wl-2sb6d.3 |
⊢ ( 𝜑 → ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 4 |
|
wl-2sb6d.4 |
⊢ ( 𝜑 → ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 5 |
1 3
|
jca |
⊢ ( 𝜑 → ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) |
| 6 |
|
sb4b |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜓 ) ) ) |
| 7 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑤 |
| 8 |
|
wl-nfnae1 |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 9 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 10 |
8 9
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 11 |
7 10
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑤 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) |
| 12 |
|
sb4b |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → ( [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
| 13 |
12
|
imbi2d |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑤 → ( ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜓 ) ↔ ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) ) |
| 14 |
|
impexp |
⊢ ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ↔ ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
| 15 |
14
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ↔ ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
| 16 |
|
nfeqf |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 = 𝑧 ) |
| 17 |
|
19.21t |
⊢ ( Ⅎ 𝑦 𝑥 = 𝑧 → ( ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜓 ) ) ↔ ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑦 ( 𝑥 = 𝑧 → ( 𝑦 = 𝑤 → 𝜓 ) ) ↔ ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) ) |
| 19 |
15 18
|
bitr2id |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ( 𝑥 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ↔ ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |
| 20 |
13 19
|
sylan9bb |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑤 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) → ( ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |
| 21 |
11 20
|
albid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑤 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |
| 22 |
6 21
|
sylan9bb |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑤 ∧ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ) ) → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |
| 23 |
4 2 5 22
|
syl12anc |
⊢ ( 𝜑 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜓 ) ) ) |