| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfna1 |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑤 |
| 2 |
|
nfeqf2 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑤 → Ⅎ 𝑥 𝑣 = 𝑤 ) |
| 3 |
1 2
|
nfan1 |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ 𝑣 = 𝑤 ) |
| 4 |
|
sbequ |
⊢ ( 𝑣 = 𝑤 → ( [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 5 |
4
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ 𝑣 = 𝑤 ) → ( [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 6 |
3 5
|
sbbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑤 ∧ 𝑣 = 𝑤 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝑣 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 8 |
|
sbequ |
⊢ ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 9 |
7 8
|
sylan9bbr |
⊢ ( ( 𝑢 = 𝑦 ∧ ( 𝑣 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 10 |
9
|
expr |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) ) |