Metamath Proof Explorer


Theorem wl-sbcom2d-lem1

Description: Lemma used to prove wl-sbcom2d . (Contributed by Wolf Lammen, 10-Aug-2019) (New usage is discouraged.)

Ref Expression
Assertion wl-sbcom2d-lem1 ( ( 𝑢 = 𝑦𝑣 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 nfna1 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑤
2 nfeqf2 ( ¬ ∀ 𝑥 𝑥 = 𝑤 → Ⅎ 𝑥 𝑣 = 𝑤 )
3 1 2 nfan1 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑤𝑣 = 𝑤 )
4 sbequ ( 𝑣 = 𝑤 → ( [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] 𝜑 ) )
5 4 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑤𝑣 = 𝑤 ) → ( [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] 𝜑 ) )
6 3 5 sbbid ( ( ¬ ∀ 𝑥 𝑥 = 𝑤𝑣 = 𝑤 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) )
7 6 ancoms ( ( 𝑣 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) )
8 sbequ ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) )
9 7 8 sylan9bbr ( ( 𝑢 = 𝑦 ∧ ( 𝑣 = 𝑤 ∧ ¬ ∀ 𝑥 𝑥 = 𝑤 ) ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) )
10 9 expr ( ( 𝑢 = 𝑦𝑣 = 𝑤 ) → ( ¬ ∀ 𝑥 𝑥 = 𝑤 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) )