| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfna1 |
|- F/ x -. A. x x = w |
| 2 |
|
nfeqf2 |
|- ( -. A. x x = w -> F/ x v = w ) |
| 3 |
1 2
|
nfan1 |
|- F/ x ( -. A. x x = w /\ v = w ) |
| 4 |
|
sbequ |
|- ( v = w -> ( [ v / z ] ph <-> [ w / z ] ph ) ) |
| 5 |
4
|
adantl |
|- ( ( -. A. x x = w /\ v = w ) -> ( [ v / z ] ph <-> [ w / z ] ph ) ) |
| 6 |
3 5
|
sbbid |
|- ( ( -. A. x x = w /\ v = w ) -> ( [ u / x ] [ v / z ] ph <-> [ u / x ] [ w / z ] ph ) ) |
| 7 |
6
|
ancoms |
|- ( ( v = w /\ -. A. x x = w ) -> ( [ u / x ] [ v / z ] ph <-> [ u / x ] [ w / z ] ph ) ) |
| 8 |
|
sbequ |
|- ( u = y -> ( [ u / x ] [ w / z ] ph <-> [ y / x ] [ w / z ] ph ) ) |
| 9 |
7 8
|
sylan9bbr |
|- ( ( u = y /\ ( v = w /\ -. A. x x = w ) ) -> ( [ u / x ] [ v / z ] ph <-> [ y / x ] [ w / z ] ph ) ) |
| 10 |
9
|
expr |
|- ( ( u = y /\ v = w ) -> ( -. A. x x = w -> ( [ u / x ] [ v / z ] ph <-> [ y / x ] [ w / z ] ph ) ) ) |