Metamath Proof Explorer


Theorem wl-sbcom2d-lem1

Description: Lemma used to prove wl-sbcom2d . (Contributed by Wolf Lammen, 10-Aug-2019) (New usage is discouraged.)

Ref Expression
Assertion wl-sbcom2d-lem1 u = y v = w ¬ x x = w u x v z φ y x w z φ

Proof

Step Hyp Ref Expression
1 nfna1 x ¬ x x = w
2 nfeqf2 ¬ x x = w x v = w
3 1 2 nfan1 x ¬ x x = w v = w
4 sbequ v = w v z φ w z φ
5 4 adantl ¬ x x = w v = w v z φ w z φ
6 3 5 sbbid ¬ x x = w v = w u x v z φ u x w z φ
7 6 ancoms v = w ¬ x x = w u x v z φ u x w z φ
8 sbequ u = y u x w z φ y x w z φ
9 7 8 sylan9bbr u = y v = w ¬ x x = w u x v z φ y x w z φ
10 9 expr u = y v = w ¬ x x = w u x v z φ y x w z φ