Metamath Proof Explorer


Theorem wl-sbcom2d

Description: Version of sbcom2 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019)

Ref Expression
Hypotheses wl-sbcom2d.1 φ ¬ x x = w
wl-sbcom2d.2 φ ¬ x x = z
wl-sbcom2d.3 φ ¬ z z = y
Assertion wl-sbcom2d φ w z y x ψ y x w z ψ

Proof

Step Hyp Ref Expression
1 wl-sbcom2d.1 φ ¬ x x = w
2 wl-sbcom2d.2 φ ¬ x x = z
3 wl-sbcom2d.3 φ ¬ z z = y
4 ax6ev u u = y
5 ax6ev v v = w
6 wl-sbcom2d-lem2 ¬ z z = x u x v z ψ x z x = u z = v ψ
7 alcom x z x = u z = v ψ z x x = u z = v ψ
8 ancomst x = u z = v ψ z = v x = u ψ
9 8 2albii z x x = u z = v ψ z x z = v x = u ψ
10 7 9 bitri x z x = u z = v ψ z x z = v x = u ψ
11 6 10 bitrdi ¬ z z = x u x v z ψ z x z = v x = u ψ
12 11 naecoms ¬ x x = z u x v z ψ z x z = v x = u ψ
13 wl-sbcom2d-lem2 ¬ x x = z v z u x ψ z x z = v x = u ψ
14 12 13 bitr4d ¬ x x = z u x v z ψ v z u x ψ
15 2 14 syl φ u x v z ψ v z u x ψ
16 15 adantl u = y v = w φ u x v z ψ v z u x ψ
17 wl-sbcom2d-lem1 u = y v = w ¬ x x = w u x v z ψ y x w z ψ
18 1 17 syl5 u = y v = w φ u x v z ψ y x w z ψ
19 18 imp u = y v = w φ u x v z ψ y x w z ψ
20 wl-sbcom2d-lem1 v = w u = y ¬ z z = y v z u x ψ w z y x ψ
21 3 20 syl5 v = w u = y φ v z u x ψ w z y x ψ
22 21 ancoms u = y v = w φ v z u x ψ w z y x ψ
23 22 imp u = y v = w φ v z u x ψ w z y x ψ
24 16 19 23 3bitr3rd u = y v = w φ w z y x ψ y x w z ψ
25 24 exp31 u = y v = w φ w z y x ψ y x w z ψ
26 25 exlimdv u = y v v = w φ w z y x ψ y x w z ψ
27 26 exlimiv u u = y v v = w φ w z y x ψ y x w z ψ
28 4 5 27 mp2 φ w z y x ψ y x w z ψ