Metamath Proof Explorer


Theorem wl-sbcom2d-lem2

Description: Lemma used to prove wl-sbcom2d . (Contributed by Wolf Lammen, 10-Aug-2019) (New usage is discouraged.)

Ref Expression
Assertion wl-sbcom2d-lem2 ¬ y y = x u x v y φ x y x = u y = v φ

Proof

Step Hyp Ref Expression
1 id ¬ y y = x ¬ y y = x
2 naev ¬ y y = x ¬ y y = v
3 naev ¬ y y = x ¬ y y = u
4 naev ¬ y y = x ¬ x x = u
5 1 2 3 4 wl-2sb6d ¬ y y = x u x v y φ x y x = u y = v φ