Description: Lemma used to prove wl-sbcom2d . (Contributed by Wolf Lammen, 10-Aug-2019) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wl-sbcom2d-lem2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑦 𝑦 = 𝑥 ) | |
| 2 | naev | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑦 𝑦 = 𝑣 ) | |
| 3 | naev | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑦 𝑦 = 𝑢 ) | |
| 4 | naev | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑥 𝑥 = 𝑢 ) | |
| 5 | 1 2 3 4 | wl-2sb6d | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝜑 ) ) ) |