Metamath Proof Explorer


Theorem wl-equsb4

Description: Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable condition. (Contributed by Wolf Lammen, 26-Jun-2019)

Ref Expression
Assertion wl-equsb4 ¬xx=zyxy=zy=z

Proof

Step Hyp Ref Expression
1 nfeqf ¬xx=y¬xx=zxy=z
2 1 ex ¬xx=y¬xx=zxy=z
3 sbft xy=zyxy=zy=z
4 2 3 syl6com ¬xx=z¬xx=yyxy=zy=z
5 sbequ12r y=xyxy=zy=z
6 5 equcoms x=yyxy=zy=z
7 6 sps xx=yyxy=zy=z
8 4 7 pm2.61d2 ¬xx=zyxy=zy=z