Metamath Proof Explorer


Theorem wl-ifp-ncond1

Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024)

Ref Expression
Assertion wl-ifp-ncond1 ¬ ψ if- φ ψ χ ¬ φ χ

Proof

Step Hyp Ref Expression
1 df-ifp if- φ ψ χ φ ψ ¬ φ χ
2 simpr φ ψ ψ
3 2 con3i ¬ ψ ¬ φ ψ
4 biorf ¬ φ ψ ¬ φ χ φ ψ ¬ φ χ
5 3 4 syl ¬ ψ ¬ φ χ φ ψ ¬ φ χ
6 1 5 bitr4id ¬ ψ if- φ ψ χ ¬ φ χ