Metamath Proof Explorer


Theorem wlimeq2

Description: Equality theorem for the limit class. (Contributed by Scott Fenton, 15-Jun-2018)

Ref Expression
Assertion wlimeq2 A=BWLimRA=WLimRB

Proof

Step Hyp Ref Expression
1 eqid R=R
2 wlimeq12 R=RA=BWLimRA=WLimRB
3 1 2 mpan A=BWLimRA=WLimRB