Metamath Proof Explorer


Theorem wlk0prc

Description: There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018) (Revised by AV, 5-Mar-2021)

Ref Expression
Assertion wlk0prc SVVtxS=VtxGWalksG=

Proof

Step Hyp Ref Expression
1 eqcom VtxS=VtxGVtxG=VtxS
2 1 biimpi VtxS=VtxGVtxG=VtxS
3 vtxvalprc SVVtxS=
4 2 3 sylan9eqr SVVtxS=VtxGVtxG=
5 g0wlk0 VtxG=WalksG=
6 4 5 syl SVVtxS=VtxGWalksG=