Metamath Proof Explorer


Theorem wlk2v2elem1

Description: Lemma 1 for wlk2v2e : F is a length 2 word of over { 0 } , the domain of the singleton word I . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 9-Jan-2021)

Ref Expression
Hypotheses wlk2v2e.i I = ⟨“ X Y ”⟩
wlk2v2e.f F = ⟨“ 0 0 ”⟩
Assertion wlk2v2elem1 F Word dom I

Proof

Step Hyp Ref Expression
1 wlk2v2e.i I = ⟨“ X Y ”⟩
2 wlk2v2e.f F = ⟨“ 0 0 ”⟩
3 c0ex 0 V
4 3 snid 0 0
5 id 0 0 0 0
6 5 5 s2cld 0 0 ⟨“ 0 0 ”⟩ Word 0
7 4 6 ax-mp ⟨“ 0 0 ”⟩ Word 0
8 1 dmeqi dom I = dom ⟨“ X Y ”⟩
9 s1dm dom ⟨“ X Y ”⟩ = 0
10 8 9 eqtri dom I = 0
11 10 wrdeqi Word dom I = Word 0
12 7 2 11 3eltr4i F Word dom I