Metamath Proof Explorer


Theorem wlk2v2elem1

Description: Lemma 1 for wlk2v2e : F is a length 2 word of over { 0 } , the domain of the singleton word I . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 9-Jan-2021)

Ref Expression
Hypotheses wlk2v2e.i
|- I = <" { X , Y } ">
wlk2v2e.f
|- F = <" 0 0 ">
Assertion wlk2v2elem1
|- F e. Word dom I

Proof

Step Hyp Ref Expression
1 wlk2v2e.i
 |-  I = <" { X , Y } ">
2 wlk2v2e.f
 |-  F = <" 0 0 ">
3 c0ex
 |-  0 e. _V
4 3 snid
 |-  0 e. { 0 }
5 id
 |-  ( 0 e. { 0 } -> 0 e. { 0 } )
6 5 5 s2cld
 |-  ( 0 e. { 0 } -> <" 0 0 "> e. Word { 0 } )
7 4 6 ax-mp
 |-  <" 0 0 "> e. Word { 0 }
8 1 dmeqi
 |-  dom I = dom <" { X , Y } ">
9 s1dm
 |-  dom <" { X , Y } "> = { 0 }
10 8 9 eqtri
 |-  dom I = { 0 }
11 10 wrdeqi
 |-  Word dom I = Word { 0 }
12 7 2 11 3eltr4i
 |-  F e. Word dom I