Description: Lemma 1 for wlk2v2e : F is a length 2 word of over { 0 } , the domain of the singleton word I . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 9-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlk2v2e.i | ⊢ 𝐼 = 〈“ { 𝑋 , 𝑌 } ”〉 | |
| wlk2v2e.f | ⊢ 𝐹 = 〈“ 0 0 ”〉 | ||
| Assertion | wlk2v2elem1 | ⊢ 𝐹 ∈ Word dom 𝐼 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlk2v2e.i | ⊢ 𝐼 = 〈“ { 𝑋 , 𝑌 } ”〉 | |
| 2 | wlk2v2e.f | ⊢ 𝐹 = 〈“ 0 0 ”〉 | |
| 3 | c0ex | ⊢ 0 ∈ V | |
| 4 | 3 | snid | ⊢ 0 ∈ { 0 } |
| 5 | id | ⊢ ( 0 ∈ { 0 } → 0 ∈ { 0 } ) | |
| 6 | 5 5 | s2cld | ⊢ ( 0 ∈ { 0 } → 〈“ 0 0 ”〉 ∈ Word { 0 } ) |
| 7 | 4 6 | ax-mp | ⊢ 〈“ 0 0 ”〉 ∈ Word { 0 } |
| 8 | 1 | dmeqi | ⊢ dom 𝐼 = dom 〈“ { 𝑋 , 𝑌 } ”〉 |
| 9 | s1dm | ⊢ dom 〈“ { 𝑋 , 𝑌 } ”〉 = { 0 } | |
| 10 | 8 9 | eqtri | ⊢ dom 𝐼 = { 0 } |
| 11 | 10 | wrdeqi | ⊢ Word dom 𝐼 = Word { 0 } |
| 12 | 7 2 11 | 3eltr4i | ⊢ 𝐹 ∈ Word dom 𝐼 |