Metamath Proof Explorer


Theorem wlk2v2elem1

Description: Lemma 1 for wlk2v2e : F is a length 2 word of over { 0 } , the domain of the singleton word I . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 9-Jan-2021)

Ref Expression
Hypotheses wlk2v2e.i 𝐼 = ⟨“ { 𝑋 , 𝑌 } ”⟩
wlk2v2e.f 𝐹 = ⟨“ 0 0 ”⟩
Assertion wlk2v2elem1 𝐹 ∈ Word dom 𝐼

Proof

Step Hyp Ref Expression
1 wlk2v2e.i 𝐼 = ⟨“ { 𝑋 , 𝑌 } ”⟩
2 wlk2v2e.f 𝐹 = ⟨“ 0 0 ”⟩
3 c0ex 0 ∈ V
4 3 snid 0 ∈ { 0 }
5 id ( 0 ∈ { 0 } → 0 ∈ { 0 } )
6 5 5 s2cld ( 0 ∈ { 0 } → ⟨“ 0 0 ”⟩ ∈ Word { 0 } )
7 4 6 ax-mp ⟨“ 0 0 ”⟩ ∈ Word { 0 }
8 1 dmeqi dom 𝐼 = dom ⟨“ { 𝑋 , 𝑌 } ”⟩
9 s1dm dom ⟨“ { 𝑋 , 𝑌 } ”⟩ = { 0 }
10 8 9 eqtri dom 𝐼 = { 0 }
11 10 wrdeqi Word dom 𝐼 = Word { 0 }
12 7 2 11 3eltr4i 𝐹 ∈ Word dom 𝐼