Metamath Proof Explorer


Theorem wlkiswwlks

Description: A walk as word corresponds to a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Assertion wlkiswwlks GUSHGraphffWalksGPPWWalksG

Proof

Step Hyp Ref Expression
1 uspgrupgr GUSHGraphGUPGraph
2 wlkiswwlks1 GUPGraphfWalksGPPWWalksG
3 1 2 syl GUSHGraphfWalksGPPWWalksG
4 3 exlimdv GUSHGraphffWalksGPPWWalksG
5 wlkiswwlks2 GUSHGraphPWWalksGffWalksGP
6 4 5 impbid GUSHGraphffWalksGPPWWalksG