Metamath Proof Explorer


Theorem wlkiswwlks

Description: A walk as word corresponds to a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Assertion wlkiswwlks ( 𝐺 ∈ USPGraph → ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃𝑃 ∈ ( WWalks ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 uspgrupgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
2 wlkiswwlks1 ( 𝐺 ∈ UPGraph → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃𝑃 ∈ ( WWalks ‘ 𝐺 ) ) )
3 1 2 syl ( 𝐺 ∈ USPGraph → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃𝑃 ∈ ( WWalks ‘ 𝐺 ) ) )
4 3 exlimdv ( 𝐺 ∈ USPGraph → ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃𝑃 ∈ ( WWalks ‘ 𝐺 ) ) )
5 wlkiswwlks2 ( 𝐺 ∈ USPGraph → ( 𝑃 ∈ ( WWalks ‘ 𝐺 ) → ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) )
6 4 5 impbid ( 𝐺 ∈ USPGraph → ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃𝑃 ∈ ( WWalks ‘ 𝐺 ) ) )