| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | iswwlks | ⊢ ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ↔  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 4 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 5 | 4 | eleq2i | ⊢ ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 6 |  | upgruhgr | ⊢ ( 𝐺  ∈  UPGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 7 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 8 | 7 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝐺  ∈  UPGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  𝐺  ∈  UPGraph )  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 11 |  | elrnrexdm | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  ( iEdg ‘ 𝐺 )  →  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 12 |  | eqcom | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ↔  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 13 | 12 | rexbii | ⊢ ( ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ↔  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 14 | 11 13 | imbitrrdi | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  ( iEdg ‘ 𝐺 )  →  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 15 | 10 14 | syl | ⊢ ( ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  𝐺  ∈  UPGraph )  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  ( iEdg ‘ 𝐺 )  →  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 16 | 5 15 | biimtrid | ⊢ ( ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  𝐺  ∈  UPGraph )  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 17 | 16 | ralimdv | ⊢ ( ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  𝐺  ∈  UPGraph )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 18 | 17 | ex | ⊢ ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝐺  ∈  UPGraph  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 19 | 18 | com23 | ⊢ ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  ( 𝐺  ∈  UPGraph  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 20 | 19 | 3impia | ⊢ ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝐺  ∈  UPGraph  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 22 |  | ovex | ⊢ ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∈  V | 
						
							| 23 |  | fvex | ⊢ ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 24 | 23 | dmex | ⊢ dom  ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 25 |  | fveqeq2 | ⊢ ( 𝑥  =  ( 𝑓 ‘ 𝑖 )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ↔  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 26 | 22 24 25 | ac6 | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  ∃ 𝑓 ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 27 | 21 26 | syl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ∃ 𝑓 ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 28 |  | iswrdi | ⊢ ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) )  →  𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 31 |  | len0nnbi | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑃  ≠  ∅  ↔  ( ♯ ‘ 𝑃 )  ∈  ℕ ) ) | 
						
							| 32 | 31 | biimpac | ⊢ ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 33 |  | wrdf | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 34 |  | nnz | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( ♯ ‘ 𝑃 )  ∈  ℤ ) | 
						
							| 35 |  | fzoval | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℤ  →  ( 0 ..^ ( ♯ ‘ 𝑃 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( 0 ..^ ( ♯ ‘ 𝑃 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑃 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 38 |  | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ0 ) | 
						
							| 39 |  | fnfzo0hash | ⊢ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ0  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 40 | 38 39 | sylan | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ♯ ‘ 𝑓 ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 0 ... ( ♯ ‘ 𝑓 ) ) ) | 
						
							| 43 | 37 42 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑃 ) )  =  ( 0 ... ( ♯ ‘ 𝑓 ) ) ) | 
						
							| 44 | 43 | feq2d | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 )  ↔  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 45 | 44 | biimpcd | ⊢ ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 46 | 45 | expd | ⊢ ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 47 | 33 46 | syl | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 49 | 32 48 | mpd | ⊢ ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 50 | 49 | 3adant3 | ⊢ ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 52 | 51 | com12 | ⊢ ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 54 | 53 | impcom | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | 
						
							| 55 |  | simpr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 56 | 32 40 | sylan | ⊢ ( ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 58 | 57 | ex | ⊢ ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) ) | 
						
							| 59 | 58 | 3adant3 | ⊢ ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) ) | 
						
							| 61 | 60 | imp | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 63 | 55 62 | raleqtrrdv | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 64 | 63 | anasss | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 65 | 30 54 64 | 3jca | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) )  →  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 66 | 65 | ex | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 67 | 66 | eximdv | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ∃ 𝑓 ( 𝑓 : ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ∃ 𝑓 ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 68 | 27 67 | mpd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ∃ 𝑓 ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 69 | 1 7 | upgriswlk | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ↔  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ↔  ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 71 | 70 | exbidv | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ↔  ∃ 𝑓 ( 𝑓  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 72 | 68 71 | mpbird | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 73 | 72 | ex | ⊢ ( 𝐺  ∈  UPGraph  →  ( ( 𝑃  ≠  ∅  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) | 
						
							| 74 | 3 73 | biimtrid | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  →  ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) |