| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 3 | 1 2 | iswwlks |  |-  ( P e. ( WWalks ` G ) <-> ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 4 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 5 | 4 | eleq2i |  |-  ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) ) | 
						
							| 6 |  | upgruhgr |  |-  ( G e. UPGraph -> G e. UHGraph ) | 
						
							| 7 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 8 | 7 | uhgrfun |  |-  ( G e. UHGraph -> Fun ( iEdg ` G ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( G e. UPGraph -> Fun ( iEdg ` G ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> Fun ( iEdg ` G ) ) | 
						
							| 11 |  | elrnrexdm |  |-  ( Fun ( iEdg ` G ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) ) | 
						
							| 12 |  | eqcom |  |-  ( ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) | 
						
							| 13 | 12 | rexbii |  |-  ( E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> E. x e. dom ( iEdg ` G ) { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) | 
						
							| 14 | 11 13 | imbitrrdi |  |-  ( Fun ( iEdg ` G ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 15 | 10 14 | syl |  |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 16 | 5 15 | biimtrid |  |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 17 | 16 | ralimdv |  |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 18 | 17 | ex |  |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( G e. UPGraph -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 19 | 18 | com23 |  |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( G e. UPGraph -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 20 | 19 | 3impia |  |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( G e. UPGraph -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 21 | 20 | impcom |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
							| 22 |  | ovex |  |-  ( 0 ..^ ( ( # ` P ) - 1 ) ) e. _V | 
						
							| 23 |  | fvex |  |-  ( iEdg ` G ) e. _V | 
						
							| 24 | 23 | dmex |  |-  dom ( iEdg ` G ) e. _V | 
						
							| 25 |  | fveqeq2 |  |-  ( x = ( f ` i ) -> ( ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 26 | 22 24 25 | ac6 |  |-  ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 27 | 21 26 | syl |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 28 |  | iswrdi |  |-  ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> f e. Word dom ( iEdg ` G ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> f e. Word dom ( iEdg ` G ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> f e. Word dom ( iEdg ` G ) ) | 
						
							| 31 |  | len0nnbi |  |-  ( P e. Word ( Vtx ` G ) -> ( P =/= (/) <-> ( # ` P ) e. NN ) ) | 
						
							| 32 | 31 | biimpac |  |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( # ` P ) e. NN ) | 
						
							| 33 |  | wrdf |  |-  ( P e. Word ( Vtx ` G ) -> P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) ) | 
						
							| 34 |  | nnz |  |-  ( ( # ` P ) e. NN -> ( # ` P ) e. ZZ ) | 
						
							| 35 |  | fzoval |  |-  ( ( # ` P ) e. ZZ -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( # ` P ) e. NN -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) | 
						
							| 38 |  | nnm1nn0 |  |-  ( ( # ` P ) e. NN -> ( ( # ` P ) - 1 ) e. NN0 ) | 
						
							| 39 |  | fnfzo0hash |  |-  ( ( ( ( # ` P ) - 1 ) e. NN0 /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) ) | 
						
							| 40 | 38 39 | sylan |  |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) ) | 
						
							| 41 | 40 | eqcomd |  |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( ( # ` P ) - 1 ) = ( # ` f ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` f ) ) ) | 
						
							| 43 | 37 42 | eqtrd |  |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` f ) ) ) | 
						
							| 44 | 43 | feq2d |  |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) <-> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) | 
						
							| 45 | 44 | biimpcd |  |-  ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) -> ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) | 
						
							| 46 | 45 | expd |  |-  ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) ) | 
						
							| 47 | 33 46 | syl |  |-  ( P e. Word ( Vtx ` G ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) ) | 
						
							| 49 | 32 48 | mpd |  |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) | 
						
							| 50 | 49 | 3adant3 |  |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) | 
						
							| 51 | 50 | adantl |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) | 
						
							| 52 | 51 | com12 |  |-  ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) | 
						
							| 54 | 53 | impcom |  |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) | 
						
							| 55 |  | simpr |  |-  ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
							| 56 | 32 40 | sylan |  |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) | 
						
							| 58 | 57 | ex |  |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) | 
						
							| 59 | 58 | 3adant3 |  |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) | 
						
							| 60 | 59 | adantl |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) | 
						
							| 61 | 60 | imp |  |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) | 
						
							| 63 | 55 62 | raleqtrrdv |  |-  ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
							| 64 | 63 | anasss |  |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
							| 65 | 30 54 64 | 3jca |  |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 66 | 65 | ex |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 67 | 66 | eximdv |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 68 | 27 67 | mpd |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 69 | 1 7 | upgriswlk |  |-  ( G e. UPGraph -> ( f ( Walks ` G ) P <-> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f ( Walks ` G ) P <-> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 71 | 70 | exbidv |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( E. f f ( Walks ` G ) P <-> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 72 | 68 71 | mpbird |  |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f f ( Walks ` G ) P ) | 
						
							| 73 | 72 | ex |  |-  ( G e. UPGraph -> ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> E. f f ( Walks ` G ) P ) ) | 
						
							| 74 | 3 73 | biimtrid |  |-  ( G e. UPGraph -> ( P e. ( WWalks ` G ) -> E. f f ( Walks ` G ) P ) ) |