Metamath Proof Explorer


Theorem wlkiswwlksupgr2

Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 does not require G to be a simple pseudograph, but it requires the Axiom of Choice ( ac6 ) for its proof. Notice that only the existence of a function f can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 ). (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Assertion wlkiswwlksupgr2
|- ( G e. UPGraph -> ( P e. ( WWalks ` G ) -> E. f f ( Walks ` G ) P ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
2 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
3 1 2 iswwlks
 |-  ( P e. ( WWalks ` G ) <-> ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) )
4 edgval
 |-  ( Edg ` G ) = ran ( iEdg ` G )
5 4 eleq2i
 |-  ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) )
6 upgruhgr
 |-  ( G e. UPGraph -> G e. UHGraph )
7 eqid
 |-  ( iEdg ` G ) = ( iEdg ` G )
8 7 uhgrfun
 |-  ( G e. UHGraph -> Fun ( iEdg ` G ) )
9 6 8 syl
 |-  ( G e. UPGraph -> Fun ( iEdg ` G ) )
10 9 adantl
 |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> Fun ( iEdg ` G ) )
11 elrnrexdm
 |-  ( Fun ( iEdg ` G ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) )
12 eqcom
 |-  ( ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) )
13 12 rexbii
 |-  ( E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> E. x e. dom ( iEdg ` G ) { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) )
14 11 13 syl6ibr
 |-  ( Fun ( iEdg ` G ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
15 10 14 syl
 |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
16 5 15 syl5bi
 |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
17 16 ralimdv
 |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
18 17 ex
 |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( G e. UPGraph -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) )
19 18 com23
 |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( G e. UPGraph -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) )
20 19 3impia
 |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( G e. UPGraph -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
21 20 impcom
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } )
22 ovex
 |-  ( 0 ..^ ( ( # ` P ) - 1 ) ) e. _V
23 fvex
 |-  ( iEdg ` G ) e. _V
24 23 dmex
 |-  dom ( iEdg ` G ) e. _V
25 fveqeq2
 |-  ( x = ( f ` i ) -> ( ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
26 22 24 25 ac6
 |-  ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
27 21 26 syl
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
28 iswrdi
 |-  ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> f e. Word dom ( iEdg ` G ) )
29 28 adantr
 |-  ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> f e. Word dom ( iEdg ` G ) )
30 29 adantl
 |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> f e. Word dom ( iEdg ` G ) )
31 len0nnbi
 |-  ( P e. Word ( Vtx ` G ) -> ( P =/= (/) <-> ( # ` P ) e. NN ) )
32 31 biimpac
 |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( # ` P ) e. NN )
33 wrdf
 |-  ( P e. Word ( Vtx ` G ) -> P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) )
34 nnz
 |-  ( ( # ` P ) e. NN -> ( # ` P ) e. ZZ )
35 fzoval
 |-  ( ( # ` P ) e. ZZ -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) )
36 34 35 syl
 |-  ( ( # ` P ) e. NN -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) )
37 36 adantr
 |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) )
38 nnm1nn0
 |-  ( ( # ` P ) e. NN -> ( ( # ` P ) - 1 ) e. NN0 )
39 fnfzo0hash
 |-  ( ( ( ( # ` P ) - 1 ) e. NN0 /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) )
40 38 39 sylan
 |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) )
41 40 eqcomd
 |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( ( # ` P ) - 1 ) = ( # ` f ) )
42 41 oveq2d
 |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` f ) ) )
43 37 42 eqtrd
 |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` f ) ) )
44 43 feq2d
 |-  ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) <-> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) )
45 44 biimpcd
 |-  ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) -> ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) )
46 45 expd
 |-  ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) )
47 33 46 syl
 |-  ( P e. Word ( Vtx ` G ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) )
48 47 adantl
 |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) )
49 32 48 mpd
 |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) )
50 49 3adant3
 |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) )
51 50 adantl
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) )
52 51 com12
 |-  ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) )
53 52 adantr
 |-  ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) )
54 53 impcom
 |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) )
55 simpr
 |-  ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } )
56 32 40 sylan
 |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) )
57 56 oveq2d
 |-  ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) )
58 57 ex
 |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) )
59 58 3adant3
 |-  ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) )
60 59 adantl
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) )
61 60 imp
 |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) )
62 61 adantr
 |-  ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) )
63 62 raleqdv
 |-  ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
64 55 63 mpbird
 |-  ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } )
65 64 anasss
 |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } )
66 30 54 65 3jca
 |-  ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
67 66 ex
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) )
68 67 eximdv
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) )
69 27 68 mpd
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) )
70 1 7 upgriswlk
 |-  ( G e. UPGraph -> ( f ( Walks ` G ) P <-> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) )
71 70 adantr
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f ( Walks ` G ) P <-> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) )
72 71 exbidv
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( E. f f ( Walks ` G ) P <-> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) )
73 69 72 mpbird
 |-  ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f f ( Walks ` G ) P )
74 73 ex
 |-  ( G e. UPGraph -> ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> E. f f ( Walks ` G ) P ) )
75 3 74 syl5bi
 |-  ( G e. UPGraph -> ( P e. ( WWalks ` G ) -> E. f f ( Walks ` G ) P ) )