| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 3 |
1 2
|
iswwlks |
|- ( P e. ( WWalks ` G ) <-> ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 4 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 5 |
4
|
eleq2i |
|- ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) ) |
| 6 |
|
upgruhgr |
|- ( G e. UPGraph -> G e. UHGraph ) |
| 7 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 8 |
7
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 9 |
6 8
|
syl |
|- ( G e. UPGraph -> Fun ( iEdg ` G ) ) |
| 10 |
9
|
adantl |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> Fun ( iEdg ` G ) ) |
| 11 |
|
elrnrexdm |
|- ( Fun ( iEdg ` G ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) ) |
| 12 |
|
eqcom |
|- ( ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) |
| 13 |
12
|
rexbii |
|- ( E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> E. x e. dom ( iEdg ` G ) { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) |
| 14 |
11 13
|
imbitrrdi |
|- ( Fun ( iEdg ` G ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 15 |
10 14
|
syl |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 16 |
5 15
|
biimtrid |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 17 |
16
|
ralimdv |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 18 |
17
|
ex |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( G e. UPGraph -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 19 |
18
|
com23 |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( G e. UPGraph -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 20 |
19
|
3impia |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( G e. UPGraph -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 21 |
20
|
impcom |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 22 |
|
ovex |
|- ( 0 ..^ ( ( # ` P ) - 1 ) ) e. _V |
| 23 |
|
fvex |
|- ( iEdg ` G ) e. _V |
| 24 |
23
|
dmex |
|- dom ( iEdg ` G ) e. _V |
| 25 |
|
fveqeq2 |
|- ( x = ( f ` i ) -> ( ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 26 |
22 24 25
|
ac6 |
|- ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 27 |
21 26
|
syl |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 28 |
|
iswrdi |
|- ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> f e. Word dom ( iEdg ` G ) ) |
| 29 |
28
|
adantr |
|- ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> f e. Word dom ( iEdg ` G ) ) |
| 30 |
29
|
adantl |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> f e. Word dom ( iEdg ` G ) ) |
| 31 |
|
len0nnbi |
|- ( P e. Word ( Vtx ` G ) -> ( P =/= (/) <-> ( # ` P ) e. NN ) ) |
| 32 |
31
|
biimpac |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( # ` P ) e. NN ) |
| 33 |
|
wrdf |
|- ( P e. Word ( Vtx ` G ) -> P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) ) |
| 34 |
|
nnz |
|- ( ( # ` P ) e. NN -> ( # ` P ) e. ZZ ) |
| 35 |
|
fzoval |
|- ( ( # ` P ) e. ZZ -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) |
| 36 |
34 35
|
syl |
|- ( ( # ` P ) e. NN -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) |
| 37 |
36
|
adantr |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) |
| 38 |
|
nnm1nn0 |
|- ( ( # ` P ) e. NN -> ( ( # ` P ) - 1 ) e. NN0 ) |
| 39 |
|
fnfzo0hash |
|- ( ( ( ( # ` P ) - 1 ) e. NN0 /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) ) |
| 40 |
38 39
|
sylan |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) ) |
| 41 |
40
|
eqcomd |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( ( # ` P ) - 1 ) = ( # ` f ) ) |
| 42 |
41
|
oveq2d |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` f ) ) ) |
| 43 |
37 42
|
eqtrd |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` f ) ) ) |
| 44 |
43
|
feq2d |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) <-> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
| 45 |
44
|
biimpcd |
|- ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) -> ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
| 46 |
45
|
expd |
|- ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) ) |
| 47 |
33 46
|
syl |
|- ( P e. Word ( Vtx ` G ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) ) |
| 48 |
47
|
adantl |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) ) |
| 49 |
32 48
|
mpd |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
| 50 |
49
|
3adant3 |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
| 51 |
50
|
adantl |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
| 52 |
51
|
com12 |
|- ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
| 53 |
52
|
adantr |
|- ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
| 54 |
53
|
impcom |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) |
| 55 |
|
simpr |
|- ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 56 |
32 40
|
sylan |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) ) |
| 57 |
56
|
oveq2d |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
| 58 |
57
|
ex |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) |
| 59 |
58
|
3adant3 |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) |
| 60 |
59
|
adantl |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) |
| 61 |
60
|
imp |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
| 62 |
61
|
adantr |
|- ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
| 63 |
55 62
|
raleqtrrdv |
|- ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 64 |
63
|
anasss |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 65 |
30 54 64
|
3jca |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 66 |
65
|
ex |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 67 |
66
|
eximdv |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 68 |
27 67
|
mpd |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 69 |
1 7
|
upgriswlk |
|- ( G e. UPGraph -> ( f ( Walks ` G ) P <-> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 70 |
69
|
adantr |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f ( Walks ` G ) P <-> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 71 |
70
|
exbidv |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( E. f f ( Walks ` G ) P <-> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 72 |
68 71
|
mpbird |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f f ( Walks ` G ) P ) |
| 73 |
72
|
ex |
|- ( G e. UPGraph -> ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> E. f f ( Walks ` G ) P ) ) |
| 74 |
3 73
|
biimtrid |
|- ( G e. UPGraph -> ( P e. ( WWalks ` G ) -> E. f f ( Walks ` G ) P ) ) |