Description: The sequence of vertices in a walk is a walk as word in a pseudograph. (Contributed by Alexander van der Vekens, 20-Jul-2018) (Revised by AV, 9-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlkiswwlks1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkn0 | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | upgriswlk | |
5 | simpr | |
|
6 | ffz0iswrd | |
|
7 | 6 | 3ad2ant2 | |
8 | 7 | ad2antlr | |
9 | upgruhgr | |
|
10 | 3 | uhgrfun | |
11 | funfn | |
|
12 | 11 | biimpi | |
13 | 9 10 12 | 3syl | |
14 | 13 | ad2antlr | |
15 | wrdsymbcl | |
|
16 | 15 | ad4ant14 | |
17 | fnfvelrn | |
|
18 | 14 16 17 | syl2anc | |
19 | edgval | |
|
20 | 18 19 | eleqtrrdi | |
21 | eleq1 | |
|
22 | 21 | eqcoms | |
23 | 20 22 | syl5ibrcom | |
24 | 23 | ralimdva | |
25 | 24 | ex | |
26 | 25 | com23 | |
27 | 26 | 3impia | |
28 | 27 | impcom | |
29 | lencl | |
|
30 | ffz0hash | |
|
31 | 30 | ex | |
32 | oveq1 | |
|
33 | nn0cn | |
|
34 | pncan1 | |
|
35 | 33 34 | syl | |
36 | 32 35 | sylan9eqr | |
37 | 36 | ex | |
38 | 31 37 | syld | |
39 | 29 38 | syl | |
40 | 39 | imp | |
41 | 40 | oveq2d | |
42 | 41 | raleqdv | |
43 | 42 | 3adant3 | |
44 | 43 | adantl | |
45 | 28 44 | mpbird | |
46 | 45 | adantr | |
47 | eqid | |
|
48 | 2 47 | iswwlks | |
49 | 5 8 46 48 | syl3anbrc | |
50 | 49 | ex | |
51 | 50 | ex | |
52 | 4 51 | sylbid | |
53 | 1 52 | mpdi | |