Metamath Proof Explorer


Theorem wlkiswwlks1

Description: The sequence of vertices in a walk is a walk as word in a pseudograph. (Contributed by Alexander van der Vekens, 20-Jul-2018) (Revised by AV, 9-Apr-2021)

Ref Expression
Assertion wlkiswwlks1 GUPGraphFWalksGPPWWalksG

Proof

Step Hyp Ref Expression
1 wlkn0 FWalksGPP
2 eqid VtxG=VtxG
3 eqid iEdgG=iEdgG
4 2 3 upgriswlk GUPGraphFWalksGPFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1
5 simpr GUPGraphFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1PP
6 ffz0iswrd P:0FVtxGPWordVtxG
7 6 3ad2ant2 FWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1PWordVtxG
8 7 ad2antlr GUPGraphFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1PPWordVtxG
9 upgruhgr GUPGraphGUHGraph
10 3 uhgrfun GUHGraphFuniEdgG
11 funfn FuniEdgGiEdgGFndomiEdgG
12 11 biimpi FuniEdgGiEdgGFndomiEdgG
13 9 10 12 3syl GUPGraphiEdgGFndomiEdgG
14 13 ad2antlr FWorddomiEdgGP:0FVtxGGUPGraphi0..^FiEdgGFndomiEdgG
15 wrdsymbcl FWorddomiEdgGi0..^FFidomiEdgG
16 15 ad4ant14 FWorddomiEdgGP:0FVtxGGUPGraphi0..^FFidomiEdgG
17 fnfvelrn iEdgGFndomiEdgGFidomiEdgGiEdgGFiraniEdgG
18 14 16 17 syl2anc FWorddomiEdgGP:0FVtxGGUPGraphi0..^FiEdgGFiraniEdgG
19 edgval EdgG=raniEdgG
20 18 19 eleqtrrdi FWorddomiEdgGP:0FVtxGGUPGraphi0..^FiEdgGFiEdgG
21 eleq1 PiPi+1=iEdgGFiPiPi+1EdgGiEdgGFiEdgG
22 21 eqcoms iEdgGFi=PiPi+1PiPi+1EdgGiEdgGFiEdgG
23 20 22 syl5ibrcom FWorddomiEdgGP:0FVtxGGUPGraphi0..^FiEdgGFi=PiPi+1PiPi+1EdgG
24 23 ralimdva FWorddomiEdgGP:0FVtxGGUPGraphi0..^FiEdgGFi=PiPi+1i0..^FPiPi+1EdgG
25 24 ex FWorddomiEdgGP:0FVtxGGUPGraphi0..^FiEdgGFi=PiPi+1i0..^FPiPi+1EdgG
26 25 com23 FWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1GUPGraphi0..^FPiPi+1EdgG
27 26 3impia FWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1GUPGraphi0..^FPiPi+1EdgG
28 27 impcom GUPGraphFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1i0..^FPiPi+1EdgG
29 lencl FWorddomiEdgGF0
30 ffz0hash F0P:0FVtxGP=F+1
31 30 ex F0P:0FVtxGP=F+1
32 oveq1 P=F+1P1=F+1-1
33 nn0cn F0F
34 pncan1 FF+1-1=F
35 33 34 syl F0F+1-1=F
36 32 35 sylan9eqr F0P=F+1P1=F
37 36 ex F0P=F+1P1=F
38 31 37 syld F0P:0FVtxGP1=F
39 29 38 syl FWorddomiEdgGP:0FVtxGP1=F
40 39 imp FWorddomiEdgGP:0FVtxGP1=F
41 40 oveq2d FWorddomiEdgGP:0FVtxG0..^P1=0..^F
42 41 raleqdv FWorddomiEdgGP:0FVtxGi0..^P1PiPi+1EdgGi0..^FPiPi+1EdgG
43 42 3adant3 FWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1i0..^P1PiPi+1EdgGi0..^FPiPi+1EdgG
44 43 adantl GUPGraphFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1i0..^P1PiPi+1EdgGi0..^FPiPi+1EdgG
45 28 44 mpbird GUPGraphFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1i0..^P1PiPi+1EdgG
46 45 adantr GUPGraphFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1Pi0..^P1PiPi+1EdgG
47 eqid EdgG=EdgG
48 2 47 iswwlks PWWalksGPPWordVtxGi0..^P1PiPi+1EdgG
49 5 8 46 48 syl3anbrc GUPGraphFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1PPWWalksG
50 49 ex GUPGraphFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1PPWWalksG
51 50 ex GUPGraphFWorddomiEdgGP:0FVtxGi0..^FiEdgGFi=PiPi+1PPWWalksG
52 4 51 sylbid GUPGraphFWalksGPPPWWalksG
53 1 52 mpdi GUPGraphFWalksGPPWWalksG