Metamath Proof Explorer


Theorem wlklenvm1

Description: The number of edges of a walk is the number of its vertices minus 1. (Contributed by Alexander van der Vekens, 1-Jul-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Assertion wlklenvm1 FWalksGPF=P1

Proof

Step Hyp Ref Expression
1 wlklenvp1 FWalksGPP=F+1
2 oveq1 P=F+1P1=F+1-1
3 wlkcl FWalksGPF0
4 3 nn0cnd FWalksGPF
5 pncan1 FF+1-1=F
6 4 5 syl FWalksGPF+1-1=F
7 2 6 sylan9eqr FWalksGPP=F+1P1=F
8 7 eqcomd FWalksGPP=F+1F=P1
9 1 8 mpdan FWalksGPF=P1