Metamath Proof Explorer


Theorem wrdl1exs1

Description: A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021)

Ref Expression
Assertion wrdl1exs1 WWordSW=1sSW=⟨“s”⟩

Proof

Step Hyp Ref Expression
1 1le1 11
2 breq2 W=11W11
3 1 2 mpbiri W=11W
4 wrdsymb1 WWordS1WW0S
5 3 4 sylan2 WWordSW=1W0S
6 s1eq s=W0⟨“s”⟩=⟨“W0”⟩
7 6 adantl WWordSW=1s=W0⟨“s”⟩=⟨“W0”⟩
8 7 eqeq2d WWordSW=1s=W0W=⟨“s”⟩W=⟨“W0”⟩
9 eqs1 WWordSW=1W=⟨“W0”⟩
10 5 8 9 rspcedvd WWordSW=1sSW=⟨“s”⟩