Metamath Proof Explorer


Theorem eqs1

Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion eqs1 W Word A W = 1 W = ⟨“ W 0 ”⟩

Proof

Step Hyp Ref Expression
1 id W = 1 W = 1
2 s1len ⟨“ W 0 ”⟩ = 1
3 1 2 syl6eqr W = 1 W = ⟨“ W 0 ”⟩
4 fvex W 0 V
5 s1fv W 0 V ⟨“ W 0 ”⟩ 0 = W 0
6 4 5 ax-mp ⟨“ W 0 ”⟩ 0 = W 0
7 6 eqcomi W 0 = ⟨“ W 0 ”⟩ 0
8 c0ex 0 V
9 fveq2 x = 0 W x = W 0
10 fveq2 x = 0 ⟨“ W 0 ”⟩ x = ⟨“ W 0 ”⟩ 0
11 9 10 eqeq12d x = 0 W x = ⟨“ W 0 ”⟩ x W 0 = ⟨“ W 0 ”⟩ 0
12 8 11 ralsn x 0 W x = ⟨“ W 0 ”⟩ x W 0 = ⟨“ W 0 ”⟩ 0
13 7 12 mpbir x 0 W x = ⟨“ W 0 ”⟩ x
14 oveq2 W = 1 0 ..^ W = 0 ..^ 1
15 fzo01 0 ..^ 1 = 0
16 14 15 syl6eq W = 1 0 ..^ W = 0
17 16 raleqdv W = 1 x 0 ..^ W W x = ⟨“ W 0 ”⟩ x x 0 W x = ⟨“ W 0 ”⟩ x
18 13 17 mpbiri W = 1 x 0 ..^ W W x = ⟨“ W 0 ”⟩ x
19 3 18 jca W = 1 W = ⟨“ W 0 ”⟩ x 0 ..^ W W x = ⟨“ W 0 ”⟩ x
20 s1cli ⟨“ W 0 ”⟩ Word V
21 eqwrd W Word A ⟨“ W 0 ”⟩ Word V W = ⟨“ W 0 ”⟩ W = ⟨“ W 0 ”⟩ x 0 ..^ W W x = ⟨“ W 0 ”⟩ x
22 20 21 mpan2 W Word A W = ⟨“ W 0 ”⟩ W = ⟨“ W 0 ”⟩ x 0 ..^ W W x = ⟨“ W 0 ”⟩ x
23 19 22 syl5ibr W Word A W = 1 W = ⟨“ W 0 ”⟩
24 23 imp W Word A W = 1 W = ⟨“ W 0 ”⟩