Metamath Proof Explorer


Theorem eqs1

Description: A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion eqs1 WWordAW=1W=⟨“W0”⟩

Proof

Step Hyp Ref Expression
1 id W=1W=1
2 s1len ⟨“W0”⟩=1
3 1 2 eqtr4di W=1W=⟨“W0”⟩
4 fvex W0V
5 s1fv W0V⟨“W0”⟩0=W0
6 4 5 ax-mp ⟨“W0”⟩0=W0
7 6 eqcomi W0=⟨“W0”⟩0
8 c0ex 0V
9 fveq2 x=0Wx=W0
10 fveq2 x=0⟨“W0”⟩x=⟨“W0”⟩0
11 9 10 eqeq12d x=0Wx=⟨“W0”⟩xW0=⟨“W0”⟩0
12 8 11 ralsn x0Wx=⟨“W0”⟩xW0=⟨“W0”⟩0
13 7 12 mpbir x0Wx=⟨“W0”⟩x
14 oveq2 W=10..^W=0..^1
15 fzo01 0..^1=0
16 14 15 eqtrdi W=10..^W=0
17 16 raleqdv W=1x0..^WWx=⟨“W0”⟩xx0Wx=⟨“W0”⟩x
18 13 17 mpbiri W=1x0..^WWx=⟨“W0”⟩x
19 3 18 jca W=1W=⟨“W0”⟩x0..^WWx=⟨“W0”⟩x
20 s1cli ⟨“W0”⟩WordV
21 eqwrd WWordA⟨“W0”⟩WordVW=⟨“W0”⟩W=⟨“W0”⟩x0..^WWx=⟨“W0”⟩x
22 20 21 mpan2 WWordAW=⟨“W0”⟩W=⟨“W0”⟩x0..^WWx=⟨“W0”⟩x
23 19 22 imbitrrid WWordAW=1W=⟨“W0”⟩
24 23 imp WWordAW=1W=⟨“W0”⟩